The realization space is [1 1 x1^2 - 2*x1 + 1 0 0 1 x1 x1^2 - 2*x1 + 1 0 1 x1] [1 0 x1^2 - x1 + 1 1 0 1 0 x1^2 - x1 + 1 x1 x1^2 - x1 + 1 x1^2] [0 0 0 0 1 1 x1^2 - x1 + 1 -x1^3 + 4*x1^2 - 4*x1 + 2 x1 - 1 x1^2 - x1 + 1 x1^2 - x1 + 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^4 - 2*x1^3 + x1 - 1, x1^10 - 7*x1^9 + 21*x1^8 - 36*x1^7 + 40*x1^6 - 29*x1^5 + 13*x1^4 - 3*x1^3) avoiding the zero loci of the polynomials RingElem[x1^2 - x1 + 1, x1, x1 - 1, x1 - 2, x1^3 - 2*x1^2 + x1 - 1, x1^3 - 3*x1^2 + 2*x1 - 1, x1^3 - 2*x1^2 + 2*x1 - 2, x1^2 - x1 - 1, x1^2 - 2*x1 + 2]